Low-complexity quantize-and-forward cooperative communication using two-way relaying
نویسندگان
چکیده
Cooperative communication is used as an effective measure against fading in wireless communication systems. In a classical one-way cooperative system, the relay needs as many orthogonal channels as the number of terminal it assists, yielding a poor spectral efficiency. Efficiency is improved in two-way relaying systems, where a relay simultaneously assists two terminals using only one timeslot. In the current contribution, a two-way quantize-and-forward (QF) protocol is presented. Because of the coarse quantization, the proposed protocol has a low complexity at the relay and can be used with half-duplex devices, making it very suitable for low-complexity applications like sensor networks. Additionally, channel parameter estimation is discussed. By estimating all channel parameters at the destination terminals, relay complexity is kept low. Using Monte-Carlo simulations, it is shown that the proposed QF protocol achieves a good frame error rate (FER) performance as compared to two-way amplify-and-forward (AF) and one-way relaying systems. It is further shown that, using the proposed estimation algorithm, the FER degradation arising from the channel parameter estimation is negligible when compared to an (unrealistic) system in which all parameters are assumed to be known.
منابع مشابه
Polarization of Multi-Relay Channels: A Suitable Method for DF and CF Relaying with Orthogonal Receiver
Polar codes, that have been recently introduced by Arikan, are one of the first codes that achieved the capacity for vast numerous channels and they also have low complexity in symmetric memoryless channels. Polar codes are constructed based on a phenomenon called channel polarization. This paper discusses relay channel polarization in order to achieve the capacity and show that if inputs of tw...
متن کاملCooperative Multiplexing in Wireless Relay Networks
Cooperative Multiplexing in Wireless Relay Networks by Vinayak Nagpal Doctor of Philosophy in Electrical Engineering University of California, Berkeley Professor Borivoje Nikolić, Chair Wireless networks are experiencing an explosive growth in the number of users and the demand for data capacity. One of the methods to improve capacity is to use tighter cooperation between terminals. In order to...
متن کاملRate-Distortion Properties of Single-Layer Quantize-and-Forward for Two-Way Relaying
The Quantize & Forward (QF) scheme for two-way relaying is studied with a focus on its rate-distortion properties. A sum rate maximization problem is formulated and the associated quantizer optimization problem is investigated. An algorithm to approximately solve the problem is proposed. Under certain cases scalar quantizers maximize the sum rate. I. INTRODUCTION Consider a communication system...
متن کاملPerformance Analysis of cooperative SWIPT System: Intelligent Reflecting Surface versus Decode-and-Forward
In this paper, we explore the impacts of utilizing intelligent reflecting surfaces (IRS) in a power-splitting based simultaneous wireless information and power transfer (PS-SWIPT) system and compare its performance with the traditional decode and forward relaying system. To analyze a more practical system, it is also assumed that the receiving nodes are subject to decoding cost, and they are on...
متن کاملStatic hybrid amplify and forward (AF) and decode and forward (DF) relaying for cooperative systems
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: Keywords: Cooperative diversity Decode and forward Amplify and forward Rayleigh fading channels a b s t r a c t In this pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Wireless Comm. and Networking
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014